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[1] An objective methodology that does not require any user-defined parameter
assumptions is introduced to obtain an improved soil moisture product along with
associated uncertainty estimates. This new product is obtained by merging model-, thermal
infrared remote sensing-, and microwave remote sensing-based soil moisture estimates in a
least squares framework where uncertainty estimates for each product are obtained using
triple collocation. The merged anomaly product is validated against in situ based soil
moisture data and shows higher correlations with observations than individual input
products; however, it is not superior to a naively merged product acquired by averaging the
products using equal weighting. The resulting combined soil moisture estimate is an
improvement over currently available soil moisture products due to its reduced uncertainty
and can be used as a standalone soil moisture product with available uncertainty estimates.
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1. Introduction
[2] Agricultural drought is commonly defined as the pres-

ence of insufficient soil water available for adequate crop
and forage production. As a result, agricultural drought is
typically monitored using soil moisture anomaly products
generated during the growing season at weekly or monthly
time scales [Anderson et al., 2011]. Consistent estimates of
soil moisture for drought monitoring can be obtained in var-
ious ways; for example through remote sensing or through
modeling of the land-surface water budget. However, these
estimates are not perfect and each method has characteristic
uncertainties [Koster et al., 2009; Jackson et al., 2010].
Therefore, it is frequently desirable to merge independent
realizations to obtain a more accurate unified estimate. The-
oretically, the more independent data that are merged, the
larger the reduction in the noise of the merged product and
past work, in a variety of fields, has demonstrated the bene-
fits of combining geophysical estimates obtaining from a
range of observational and modeling resources into a single
hybrid estimate (see, e.g., Ebert [2001] or Xie and Arkin
[1996]). However, it is important to weigh the products
based on their relative accuracies in order to minimize
errors.

[3] Data assimilation using Kalman filter-based method-
ologies is one of the most commonly used approaches for

merging different products while taking into account their
relative uncertainties. Kalman filter theory can be shown to
be a recursive solution of the least squares problem [Soren-
son, 1970] for an appropriate time frame. The solution of
Kalman [1960] enables propagation of the best estimate and
its errors in time, whereas in ordinary least squares the solu-
tion is assumed constant in time. The goal for both solutions
is obtaining an estimate with minimized error variance.
However, both solutions also require prior knowledge of
product uncertainties to obtain an optimal analysis. In land
data assimilation studies, Kalman filter-based methodolo-
gies often rely on ad-hoc statistical descriptions of errors in
assimilated observations, model parameters, or model forc-
ings. As a result, the relative weighting applied to modeled
and observed soil moisture information by a land data
assimilation is arguably subjective and does not necessarily
reflect an optimized integration of independent data sources
[Crow and Van Loon, 2006; Reichle et al., 2008]. There-
fore, our goal here is the development of an objective merg-
ing that is less dependent on uncertain, user-defined error
assumptions.

[4] Triple collocation is a method that objectively
obtains error estimates for three or more independent prod-
ucts. This method was originally introduced by Stoffelen
[1998] and Caires and Sterl [2003] to estimate near-surface
wind speed errors, and later applied in many hydrological
applications. In particular Scipal et al. [2008] estimated the
errors in passive microwave-, active microwave-, and model-
based soil moisture products. Miralles et al. [2010] estimated
errors in passive microwave-, station-, and model-based soil
moisture products and validated the error estimates using
watershed scale station-based data. Dorigo et al. [2010] eval-
uated the uncertainties of global passive microwave-, active
microwave-, and model-based soil moisture products. Hain
et al. [2011] estimated errors in passive microwave-, thermal
infrared-, and model-based soil moisture realizations and
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found passive microwave- and thermal infrared-based soil
moisture products yield complementary soil moisture infor-
mation. Parinussa et al. [2011b] estimated errors in passive
microwave-, active microwave-, and antecedent precipitation
index-based soil moisture products, then compared the triple
collocation-based errors with data assimilation-based error
estimates [Crow, 2007], and found very high correlation
between the error estimates of these two techniques.

[5] It is relatively straight forward to use triple colloca-
tion as a means to estimate observation error covariance pa-
rameters required by land data assimilation systems [Crow
and van den Berg, 2010]. However, applying triple colloca-
tion to the parameterization of modeling error within a Kal-
man filter is more difficult, and—to our knowledge—has
not yet been attempted. In particular, a Kalman filter
requires covariance information regarding background errors
that vary in time according to flow conditions and/or the fre-
quency of assimilated observations. In contrast, triple collo-
cation provides only a temporally constant value of error
representing a continuous, nonupdated integration of the
forecast model. Likewise, triple collocation provides only in-
formation about the magnitude of modeling errors and not
their source and/or impact on the full model forecast covari-
ance matrix. Such information is often important in land
data assimilation applications [Crow and Van Loon, 2006].
While potentially resolvable, these challenges suggest that
the initial use of triple collocation-based modeling errors
should be based on a relatively simple least square frame-
work as opposed to a full data assimilation approach.

[6] Here we propose an objective methodology that does
not require any user-defined error parameters as input. In
this approach, different anomaly soil moisture products are
merged in a least squares framework that relies on product
error estimates obtained from triple collocation. Specifi-
cally, we have merged weekly, growing-season soil moisture
anomaly products obtained from thermal remote sensing via
the atmosphere land exchange inversion (ALEXI [Anderson
et al., 2007a]) model, microwave remote sensing via the land
parameter retrieval model (LPRM [Owe et al., 2008]), and
the Noah [Ek et al., 2003] land surface model. The least
squares framework is also able to provide estimates of uncer-
tainty in the merged product, which could be used to augment
existing drought products. It should be stressed that the pre-
sented approach is particularly well suited for agricultural
drought applications commonly based on the detection of
growing-season soil moisture anomalies at weekly to monthly
time scales. The proposed methodology can also potentially
add value to soil moisture products derived from current and
future soil moisture satellite missions (i.e., SMOS (soil mois-
ture and ocean salinity); SMAP (soil moisture active pas-
sive)) by optimally merging them with various independent
soil moisture estimates.

[7] The general least squares solution is briefly reviewed
in section 2. Section 3 reviews the triple collocation equa-
tions, section 4 introduces the input data, section 5 presents
the results, and section 6 summarizes our conclusions.

2. Least Squares Merging
[8] Least squares is an estimation theory that has been

used in numerous studies since its initial applications by
Gauss [1963] and Legendre [1806]. Kalman [1960] has

shaped the theory into its current form [Sorenson, 1970],
which can be used to describe the basis of most modern
data assimilation techniques [Talagrand, 1997]. The least
squares solution has been derived in many studies; a brief
review is given here to provide background for our pro-
posed merging algorithm.

[9] Assume we have three independent realizations
(Sx, Sy, and Sz) of a variable along with their respective
zero-mean errors (�x, �y, and �z) and error variances (�2

x , �2
y ,

and �2
z ). These realizations can be represented by

Sx ¼ �St þ �x; (1)

Sy ¼ �St þ �y; (2)

Sz ¼ �St þ �z; (3)

where St is the true value of the variable and � is a measure
of the relation between these realizations and the assumed
truth. Although in some cases � ¼ 1, this is not a require-
ment; the least squares solution can be obtained as long as
all realizations relate to the truth with the same coefficient.
The desired merged estimate Sm is obtained as

Sm ¼ wxSx þ wySy þ wzSz; (4)

where wx, wy, and wz are the relative weights of Sx, Sy, and
Sz, respectively. To have an unbiased merged estimate
(E½Sm � �St� ¼ 0), it is required that wx þ wy þ wz ¼ 1.
Given these constraints, the ultimate goal is to derive these
weights as functions of the error variance of the three real-
izations and to find the error variance estimate of the
merged product. The error estimate of the merged product
is obtained as �m ¼ Sm � �St and the solution we seek min-
imizes a selected cost function (J) in a mean squares sense.
Here we select J to be the error variance (�2

m) of the merged
estimate in the form

J ¼ �2
m ¼ w2

x�
2
x þ w2

y�
2
y þ w2

z�
2
z ; (5)

J ¼ �2
m ¼ w2

x�
2
x þ ð1� wx � wzÞ2�2

y þ w2
z�

2
z : (6)

Setting @J=@wz ¼ 0 and @J=@wx ¼ 0 in equation (6) and
solving for wx, wy, and wz, we obtain

wx ¼
�2

y�
2
z

�2
x�

2
y þ �2

x�
2
z þ �2

y�
2
z

; (7)

wy ¼
�2

x�
2
z

�2
x�

2
y þ �2

x�
2
z þ �2

y�
2
z

; (8)

wz ¼
�2

x�
2
y

�2
x�

2
y þ �2

x�
2
z þ �2

y�
2
z

: (9)

The solution is intuitive since the weights are proportional
to the uncertainty of the other two estimates. If two
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realizations are available instead of three, then the least
squares solution can be applied similarly with a cost func-
tion selection of

J ¼ �2
m ¼ w2

x�
2
x þ ð1� wxÞ2�2

y ; (10)

with weights

wx ¼
�2

y

�2
x þ �2

y

; (11)

wy ¼
�2

x

�2
x þ �2

y

: (12)

3. Error Estimation Using Triple Collocation
[10] For a given set of realizations, optimal merging

based on the least squares technique described here requires
an estimate of the relative uncertainties of the input prod-
ucts. In this study, the error variances of these estimates are
obtained using triple collocation. In particular, we apply
assumptions underlying the triple collocation approach of
Stoffelen [1998],

S1 ¼ �1St þ e1; (13)

S2 ¼ �2St þ e2; (14)

S3 ¼ �3St þ e3; (15)

where St is the true soil moisture anomaly with variance
�2

t ; S1, S2, and S3 are three soil moisture anomalies related
to truth with �1, �2, and �3 coefficients, with zero-mean
errors e1, e2, and e3, and with error variances �2

1, �2
2, and

�2
3 respectively. Here �2

t does not imply the truth has
errors, but rather it is the true soil moisture variance in
time.

[11] In general, we may expect products to have differ-
ences in their relationship with the truth. Therefore, rescal-
ing is required to ensure each data set has a consistent
relationship with the assumed truth via reconciling equa-
tions (13)–(15) and equations (1)–(3). We rescale these
realizations using

S�1 ¼ �St þ e�1; (16)

S�2 ¼ �St þ e�2; (17)

S�3 ¼ �St þ e�3; (18)

where S�1 , S�2 , and S�3 are the rescaled realizations and e�1,
e�2, and e�3 are the relative errors of the realizations with var-
iances ��21 , ��22 , and ��23 . Rescaled values are related to the
initial estimates as S�1 ¼ S1c1, S�2 ¼ S2c2, and S�3 ¼ S3c3,
where c1, c2, and c3 are the rescaling factors. By arbitrarily
selecting any of the data sets as a reference (by setting
� ¼ �1), and assuming error covariances between products

are zero and the representativeness errors described by
Stoffelen [1998] are zero, these factors can be found as

c1 ¼ 1; (19)

c2 ¼
S�1S�3
S�2S�3

¼ �1

�2
; (20)

c3 ¼
S�1 S�2
S�3 S�2

¼ �1

�3;
(21)

where overbar indicates averaging in time. In general, the ac-
curacy of the rescaling in matching the data sets with the ref-
erence data set or the truth is tied to the strength of the linear
relationship between the products assumed in equations (1)–
(3). When compared to more nonlinear systems, highly lin-
ear systems are expected to have smaller sampling errors
and require fewer observations to obtain similar levels of ac-
curacy. Also, note that this rescaling step can be performed
independently for each area or time period of interest, hence
it may vary spatially and/or temporally.

[12] Assuming the errors of the products are independent
from each other and from the truth, and assuming a mutual
linear relationship between these estimates and the true soil
moisture, the final error variances of the rescaled realiza-
tions are found as

��21 ¼ ðS�1 � S�2ÞðS�1 � S�3Þ; (22)

��22 ¼ ðS�2 � S�1ÞðS�2 � S�3Þ; (23)

��23 ¼ ðS�3 � S�1ÞðS�3 � S�2Þ: (24)

[13] Once these error variance estimates are obtained,
they are inserted into equations (7)–(9) (or (11) and (12)) to
obtain least squares weights at each time step. While the
obtained error variance estimates are constant in time,
these weights are not. When all three realizations are avail-
able, the least squares solution for three data sets (equations
(7)–(9)) is used; when two out of three realizations are
available then the least squares solution for two data sets
(equations (11) and (12)) is used. Accordingly, equation (5)
or (10) is used to calculate the reported error variance of
the merged product at each time step.

[14] In the triple collocation system of equations pre-
sented above ((13)–(15)), there are seven unknown parame-
ters (�1, �2, �3, �2

t , �2
1, �2

2, and �2
3) constrained by three

equations. By selecting a reference data set (i.e., assuming
� ¼ �1) and rescaling other data sets to this reference, our
goal in equations (16)–(18) becomes seeking a solution for
four unknown parameters (�2�2

t , ��21 , ��22 , and ��23 ), rather
than seven. This system, with four unknowns and three
equations, is still under-determined. We are able to solve
for these four unknowns only after assuming all error
related cross covariances are zero. Without this assumption,
the �2�2

t term remains in the system of equations as an
unknown.

[15] However, in the absence of any other independent
information, we cannot decompose the �2�2

t estimate into
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estimates of �2 and �2
t ; meaning we can never know the

true �2
t . Different reference data set selections result in dif-

ferent �2�2
t as well as different ��21 , ��22 , and ��23 . Therefore

the triple collocation equations described above provide
only the relative accuracy of these realizations (how the
noisiness of one product compares against that of another
product), whereas the absolute values of the error variances
themselves are dependent on the reference data set selec-
tion. While triple collocation is not ideal for capturing
absolute errors, its representation of relative errors between
input products is independent from the arbitrary choice of a
single data set as a scaling reference. Fortunately, this type
of relative information is all that is required in order to
determine optimal least squares averaging.

4. Data
4.1. Input Data Sets

[16] The study area is selected as the contiguous United
States (CONUS), between 125� and 67�W and 25� and
50�N. Consistent with our stated focus on the monitoring
of agricultural drought during the growing season, daily
data sets are obtained from 2002 to 2010 for the growing
season months of April through October. Large-scale soil
moisture information is currently available from three inde-
pendent sources: retrievals derived from thermal-infrared
remote sensing, retrievals derived from microwave remote
sensing, and estimates derived from water balance models
forced with micrometeorological observations. Here, all
three sources of soil moisture data are used as input into the
triple collocation analysis. In particular, this study utilizes
an ALEXI energy balance model soil moisture proxy
obtained from thermal infrared remotely sensed images,
LPRM soil moisture estimates that are obtained from pas-
sive microwave remote sensing images, and Noah land sur-
face model soil moisture simulations. The methodology
was applied at a grid space of 0.25� ; data sets at higher
native resolution have been aggregated to this common
grid. All data sets were averaged to weekly composites
from their native temporal resolution.

[17] ALEXI is a two-source (soil and vegetation) model
that solves for the latent and sensible heat components of
the surface energy balance by taking advantage of measure-
ments of morning land-surface temperature rise obtained
by geostationary satellites [Anderson et al., 1997; Mecikal-
ski et al., 1999; Anderson et al., 2007a]. Using the obtained
fluxes, a strong relationship was found between the ratio of
actual to potential evapotranspiration fluxes (fPET) and
the fraction of available water (faw) in the soil column
[Anderson et al., 2007a, 2007b, 2011]. Following these
studies, Hain et al. [2009] proposed unique relationships
between fPET and faw, evaluated this relation using soil
moisture observations from the Oklahoma Mesonet Net-
work, and showed ALEXI has valuable information about
faw, which serves as a proxy for the root-zone soil moisture
in the vegetated areas. Here we utilize ALEXI-based fPET

retrievals following the approach described by Hain et al.
[2011]. Note that ALEXI fPET represents a surface–root-
zone merged soil moisture estimate, yielding a proxy esti-
mate of water availability for evapotranspiration (i.e., water
in the surface layer for bare soil evaporation, and water in
the root zone for canopy transpiration). ALEXI fPET values

have been aggregated from 10 km to 0.25� resolution.
Given its reliance on the thermal remote sensing-based
observations, current ALEXI retrievals are limited to clear-
sky conditions, which is a major limitation to data avail-
ability particularly over the northern US. To fill the entire
grid, it is necessary to average daily fPET fields over time to
create time composites. Detailed information about the der-
ivation of an ALEXI-based soil moisture proxy can be
found in the above mentioned studies.

[18] Noah (version 2.7) LSM data were obtained from
the global simulations generated using Global Land Data
Assimilation System (GLDAS [Rodell et al., 2004]) forcing
data. The Noah model employs a coupled surface water and
energy balance, computing multilayer soil moisture as the
storage component of the soil water balance. More details
about these Noah simulations can be found at http://disc.
sci.gsfc.nasa.gov/hydrology/documentation. These hourly
simulations were performed at 0.25� spatial resolution,
hence spatial aggregation was not needed. Since the ALEXI
soil moisture proxy has mixed vertical support over sparsely
and densely vegetated surfaces, a Noah soil moisture esti-
mate was computed that mimics this vertical support.
The second-layer (10–40 cm depth) and the third-layer
(40–100 cm depth) soil moisture simulations were averaged
into a root-zone soil moisture estimate (Noahroot) by weight-
ing each layer volumetric soil moisture proportional to re-
spective soil layer depths. This root-zone product and the
surface (0–10 cm) soil moisture simulations (Noahsrfc)
were later combined into an adjusted soil moisture estimate
(Noahadj) following the method of Hain et al. [2011]

Noahadj ¼ ð1� fvcÞNoahsrfc þ fvcNoahroot; (25)

where fvc is the fractional vegetation cover based on remote
sensing-based observations of leaf area index acquired by
the moderate resolution imaging spectroradiometer (MODIS)
as shown in Figure 1. As a result of equation (25), Noahadj

estimates are essentially surface soil moisture estimates over
areas with no vegetation cover, and are root-zone soil mois-
ture estimates over areas with dense vegetation cover. Here
vegetation-adjusted soil moisture reflects soil moisture con-
ditions in the part of the root zone that is in direct interaction
with the atmosphere (by supplying water for evapotranspira-
tion). Therefore, it is representative of the soil layer depth for
sampling the moisture associated with vegetation and surface
water stress and thus a natural metric for monitoring the se-
verity of agricultural drought.

[19] Advanced microwave scanning radiometer EOS
(AMSR-E) microwave remote sensing-based brightness
temperature observations have been used in numerous pas-
sive microwave-based algorithms [Jackson, 1993; Owe
et al., 2001; Njoku and Chan, 2006; Lu et al., 2009], and
the resulting soil moisture products have been extensively
validated under a wide range of ground conditions and cli-
mate regimes [Draper et al., 2009; Mladenova et al.,
2011; Parinussa et al., 2011a]. Here we utilize LPRM sur-
face soil moisture retrievals [Owe et al., 2008] obtained
from Vrije University Amsterdam (VUA). LPRM soil mois-
ture estimates are obtained using a one-layer model based
on radiative transfer at the surface. This retrieval model
uses soil related information as ancillary data, and solves
for soil moisture, vegetation optical depth, and effective
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physical soil temperature. The model uses the relationship
between microwave polarization difference index, vegeta-
tion optical depth, and soil dielectric constant [Owe et al.,
2008], and solves for the skin temperature using a regres-
sion-based model based on Ka-band vertical polarization
AMSR-E brightness temperature data [Holmes et al., 2009].
Soil moisture retrievals used in this study are based on
C- and X-band (mixed) descending AMSR-E brightness
temperature observations. However, X-band observations
are only also used in areas of the world where C-band
observations are affected by radio frequency interference.
Only the descending AMSR-E observations are used in this
study primarily because they may result in more accurate
soil moisture estimates than the observations acquired dur-
ing ascending orbits [Draper et al., 2009]. The LPRM soil
moisture estimates refer to the top 3 cm of the soil profile.
AMSR-E-based brightness temperature observations are
obtained at native spatial resolutions of 56 and 38 km for
the C- and X-bands, respectively. The operational LPRM
product has been regridded to 0.25� spatial resolution by
taking advantage of the multiple footprint centers that fall
within the same 0.25� grid.

[20] Note that all three parent soil moisture data sets are
obtained from different algorithms driven by different input
data. These differences support the error independence
assumption underlying application of triple collocation. On
the other hand, these products also have different system-
atic and random relationships with the truth. However, here
it is stressed that as long as highly linear relationships exist
between the products, the data set retrieval method does
not present a problem in a triple collocation framework.
This issue will be revisited in section 5.4.

[21] In terms of timing, ALEXI provides a direct estimate
of the soil moisture conditions at shortly before the local
noon on days with clear morning conditions. LPRM soil
moisture retrievals are obtained using microwave remote

sensing-based observations collected at 1:30 am local time.
On the other hand, Noah soil moisture (SM) estimates are
temporally continuous, and available at an hourly time inter-
val. Accordingly, there could be inconsistencies between
the weekly composites for each product due to differences
in the temporal representativeness of each product. How-
ever, the impact of these inconsistencies should be mini-
mized by the temporal averaging and standardization (see
section 4.3 below) performed to obtain weekly composites.

[22] Given orbit patterns and typical frequency of masked
retrievals, ALEXI and LPRM provide about 3.0 and 4.0
retrievals per week (respectively) over CONUS during the
growing season (Figure 2). ALEXI has best temporal coverage
over southwestern CONUS and LPRM has better temporal
coverage over the midwest and southern CONUS (Figure 2).
In addition to the satellite overpass availability, cloud cover
and dense vegetation are the primary factors affecting the data
availability of ALEXI and LPRM, respectively.

4.2. Validation Data Sets

[23] The merged product has been evaluated in compari-
son with in situ soil moisture observations from the Okla-
homa MESONET Network [Brock et al., 1995; Basara
and Crawford, 2000] and the soil climate analysis network
(SCAN [Schaefer et al., 2007]) within the CONUS. In
Oklahoma, an integrated network of 135 meteorological sta-
tions has been installed during the past two decades (Figure
1). Among these stations, around 100 have calibrated soil
moisture monitoring devices taking measurements at 5, 25,
60, and 75 cm depths. Collected data undergo automated
and manual quality controls conducted by University of
Oklahoma during the conversion of 30 min raw data into
daily soil moisture averages [Illston et al., 2008]. There are
over 150 SCAN stations (Figure 1) spread throughout the
CONUS taking hourly soil moisture measurements at 5, 10,

Figure 1. Average fraction of vegetation cover climatology over CONUS from April to October. The
locations of SCAN stations used in the study are shown with symbol X. The state of Oklahoma, where
all MESONET stations are distributed within, is shown with a black polygon.
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20, 50, and 100 cm depths [Schaefer et al., 2007], which
later undergo quality control procedures.

[24] In a manner analogous to equation (25), a vegetation
correction has been applied to the station measurements to
ensure consistent soil moisture estimates between the
merged products and the validation data sets. More specifi-
cally, the first layer (top 5 cm) MESONET data have been
taken as surface soil moisture and a weighted average of
the second to the fourth layers as a root zone. MODIS-
based vegetation cover fraction (Figure 1) information on a
0.25� grid was interpolated from a native 8 day temporal
resolution to weekly and is assumed to be of the station
location. Vegetation correction to the MESONET data was
carried out using equation (25). Similarly a vegetation cor-
rection was also applied to SCAN soil moisture values; the
first layer soil moisture values were used as surface values
and average soil moisture values of the second to the fifth
layers, weighted by their depths, were used as root-zone
values. The merged soil moisture estimates were validated
using these vegetation-cover adjusted soil moisture obser-
vations. Because the MESONET and the SCAN station data
were adjusted for vegetation cover fraction, the number of
available station data points depends on the availability of
both the surface and the root-zone observations. Since root-
zone observations are not as readily available as surface
observations, there are approximately only 50 MESONET
and SCAN stations (Figure 1) available for verification.

[25] The skill of the triple collocation-based weights was
also evaluated by comparing the performance of the merged
estimate against the performance of a naively merged prod-
uct performance, which simply assumes equal weights for
each available product.

4.3. Data Standardization

[26] Weekly composites were standardized, so that their
time mean (across years) is zero and time variance is unity
for a given pixel and week

�w;lon;lat ¼
Xnar

y

SMy;w;lon;lat=nar; (26)

�w;lon;lat ¼
Xnar

y

SMy;w;lon;lat � �w;lon;lat

� �2
=nar

" #1=2

; (27)

SMsy;w;lon;lat ¼
SMy;w;lon;lat � �w;lon;lat

�w;lon;lat
; (28)

where y, w, lon, and lat denote year, week, longitude, and
latitude, respectively; SM denotes one of the three soil
moisture products used in this study (ALEXI, Noah, and
LPRM); SMs are the standardized soil moisture anomalies
that are merged; and nar is the number of available realiza-
tions out of 9 years for the given week, longitude, and lati-
tude. The climatologies are removed with the standardization
process so that data sets have zero mean (consistent with the
solution of Stoffelen [1998]) and unity standard deviation.
Consequently, the triple collocation analysis and the merging
process were performed solely using the standardized soil
moisture anomalies defined above. Even though the merged
product presented in this study is an anomaly product, it can
be linearly transformed into absolute value products by select-
ing a reference data and applying the inverse of equation (28)
using the standard deviation and mean values of the reference
data set.

[27] There are only 9 years of data (9 points) available to
calculate the mean and the standard deviation statistics for
each week during the standardization process. The accu-
racy of these statistics could be improved by using longer
time windows (i.e., 5 weeks). However, this may induce ar-
tificial autocorrelation in the standardized products and
reduce the degrees of freedom for the triple collocation
studies. Hence there is likely a trade-off between the accu-
racy of the standardized products and the accuracy of the
triple collocation-based errors. In order to examine this
issue, results were calculated using both a 1 and 5 week
sampling window and separately evaluated.

4.4. Vertical Support

[28] The output product produced by ALEXI is a vegeta-
tion-adjusted (surface–root-zone merged) soil moisture
estimate representing a proxy estimate of water available
for evapotranspiration. Using equation (25), Noah soil
moisture predictions can be converted into a variable with
the same vertical support. However, LPRM soil moisture is
associated only with the surface (0 to 3 cm) and therefore
has a different vertical support than Noah and ALEXI soil
moisture products over vegetated areas.

Figure 2. Average number of ALEXI and LPRM retrievals per week obtained between April and
October (2002–2010).
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[29] To examine this effect, additional triple collocation
analyses were performed using vegetation-adjusted LPRM
values obtained similar to equation (25) using LPRM-based
surface (native) and root-zone products. LPRM-based root-
zone products required as input into equation (25) were
obtained using the exponential smoothing methodology
described by Wagner et al. [1999] and Albergel et al.
[2008] to estimate root-zone soil moisture retrievals from
superficial observations

LPRMrootðtÞ ¼

X
i

LPRMsrfcðtiÞe�ðt�tiÞ=�

X
i

e�ðt�tiÞ=�
; (29)

where ti � t, LPRM srfc is the surface LPRM soil moisture
estimate at time ti ; LPRM root is the root-zone soil moisture
estimate; and � is the characteristic time length. Specifi-
cally, three vegetation-adjusted LPRM products were esti-
mated using three separate root-zone LPRM values obtained
via assigning � values of 4, 7, and 14 days. Accordingly, we
have performed four parallel triple collocation analyses that
use the same ALEXI and Noah data sets but different
LPRM-based soil moisture values (one LPRM-surface prod-
uct and three vegetation-adjusted LPRM products).

[30] In this study we also used CLM (version 2.0) simu-
lations, solely for the investigation of surface–vegetation-
adjusted soil moisture values coupling and not in the triple
collocation merging methodology (section 5 below). Like
Noah, CLM is a soil-vegetation-atmosphere transfer model
that solves for the water and the energy balance at the sur-
face [Dai et al., 2003], and is driven here by GLDAS forc-
ing data [Rodell et al., 2004]. CLM simulations have 1�

spatial resolution and utilize 10 soil layers with 2, 3, 4, 8,
12, 20, 34, 55, 92, and 113 cm depths, respectively. Con-
sistent with Noah soil layer depths, vegetation-adjusted
CLM soil moisture values were obtained (equation (25)) by
using surface soil moisture estimates defined as the weighted
average of the first to the third layers (0–9 cm) and using
root-zone soil moisture estimates defined as the weighted av-
erage of the fourth to seventh layers (10–83 cm).

4.5. Additional Considerations

[31] For cross comparisons of the linear relation between
parent products, cross correlations were calculated without
setting any threshold for the availability of the products.
The resulting correlation values were then masked if a sig-
nificant correlation was not found. For the triple collocation
we have set a minimum number (100) of mutually available
data sets. If at least 100 mutually available soil moisture
values were not found, then the triple collocation analysis
was not performed and all error variance estimates were
assumed equal. Here we note that these estimates are used
at all time steps for the weight calculation process regard-
less of whether or not any of the products are missing.

[32] Even though the triple collocation-based errors are
constant in time, weights used for merging products at each
time step are calculated separately depending on the avail-
ability of the data sets for that particular time step. If all
products are available, weights are calculated using equa-
tions (7)–(9); if only two products are available then
weights are calculated using equations (11) and (12), while

the missing product is assigned a weight of zero; or if only
a single product is available, then this product is assigned a
weight of one and the two other missing products are
assigned zero weight. Weights change in time only due to
the availability of the products at any given time step. If
there are not enough mutually available products, meaning
a triple collocation-based estimate is not available and equal
error variances are assigned, then products are merged using
equal weights.

[33] The merged product at any given time can be based
on anywhere between one and three realization(s). Hence,
the uncertainty of the merged product (equation (6)) at any
given location may not be constant in time; dates with
more missing soil moisture values have higher uncertainty
compared to dates with less missing values. Accordingly,
for each available merged product, its uncertainty is also
given as a separate product. There will also be temporal
changes in the basis of merged predictions as the availabil-
ity of ALEXI and LPRM changes over time. The lack of
temporal consistency brought on by the intermittent avail-
ability of observations is a generic problem in land data
assimilation. However, the issue is arguably more acute for
our particular system since these variations will manifest
themselves as abrupt variations in our analysis (rather than
being smoothed over time as they would be in a full data
assimilation system).

[34] Triple collocation-based error estimates are also de-
pendent on the availability of the daily products, which
influences the uncertainty of the sampled weekly compo-
sites. The more frequently a data set is available, the less
noisy its weekly composites become. Noah weekly esti-
mates are based on 168 separate hourly Noah soil moisture
predictions generated each week (i.e., 24 estimates/day
times 7 days), while ALEXI and LPRM have on average
3–4 estimates per week. Hence, Noah has better ‘‘weekly’’
temporal support than do the other products. However, it
should be noted that poor support is simply one component
of the total random error detected by triple collocation and
therefore poses no particular challenge for our proposed
merging strategy.

5. Results
5.1. Correlations and Weights

[35] ALEXI-, Noah-, and LPRM-based soil moisture
anomaly estimates were used to calculate the error varian-
ces of each product in a triple collocation framework. As
triple collocation-based error estimates require a mutual
linear relationship between products, we have evaluated the
linearity between the three products by analyzing their
cross correlations (Figure 3) using anomaly products. Sig-
nificant correlations between LPRM and ALEXI, and
between LPRM and Noah over large parts of Eastern CO-
NUS are not found (consistent with Hain et al. [2009]),
which is partly due to the nonavailability of LPRM soil
moisture estimates caused by the strong attenuation of the
microwave signal over densely vegetated areas. On the
other hand, there are strong cross correlations over areas of
central CONUS, indicating a strong mutual linear relation-
ship between various soil moisture products.

[36] The triple collocation-based errors were computed
using equations (22)–(24) and were used in the least
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squares framework to obtain weights using equations
(7)–(9). The resulting weights shown in Figure 4 are intui-
tively consistent with the cross correlations of the products
(Figure 3); the product that has the highest cross correla-
tion with its pairs also has the largest estimated weights.
For example, the correlations between Noah and ALEXI
and between Noah and LPRM are higher than the correla-
tions between ALEXI and LPRM over North Dakota;
therefore, Noah weighting is relatively higher than both
ALEXI and LPRM over this area (Figure 4, top row). Simi-
larly, the correlations between LPRM and ALEXI and
between LPRM and Noah are higher than the correlations
between ALEXI and Noah over Montana; therefore, the
optimal weighting applied to LPRM retrievals is higher than
the weighting of ALEXI and Noah over this area. In general,
ALEXI performs better over southern CONUS, which can
be attributed to the lower temporal coverage of ALEXI over
northern CONUS due to clouds [Hain et al., 2011].

[37] This study focused on the warm season mainly
because agricultural drought is associated with the warm sea-
son over the study area; however, it is possible to perform
the methodology for any time period using various data sets.
In general, we may expect remote sensing-based weekly soil
moisture averages retrieved during winter to have higher
sampling errors than estimates retrieved during summer due
to larger data gaps (both temporally and spatially) partly
caused by snow and frozen soil conditions. Hence, a single
set of weights for the entire year may not reflect the error
characteristics as well as monthly derived weights. Unfortu-
nately, the estimation of monthly weights likely requires lon-
ger time series than are currently available.

5.2. Merged Estimate and Station Data

[38] All subsequent merging results are based on the
case of no LPRM smoothing (i.e., the top row in Figure 4).
For the merging methodology, the weights in Figure 4 are
used only when all three the data sets are available; for
missing days, weights were calculated using the error esti-
mates of the available days. Parent products (ALEXI, Noah,
and LPRM), the merged estimate (merged realization using
least squares), and the uncertainty of the merged estimate for
the 19th week (7–13 May) of 2007 is shown in Figure 5. For
this particular week, the standard deviation of the error esti-
mate is around 0.40 (unitless as all products are standardized
anomalies), and the soil moisture anomalies range between
�2.6 and þ2.7 standard deviations around the climatology

of the given local pixel. Note that the merged product is a
standardized anomaly product that should generally range
between about �3 and þ3. However, it is emphasized that
this can be easily linearly transformed into absolute value
products by using the statistics (i.e., mean and standard devi-
ation) of any reference data set. In fact, such linear transfor-
mations are very common in hydrological applications (i.e.,
variance matching, cumulative distribution function match-
ing, etc.), particularly in land data assimilation studies [i.e.,
Reichle and Koster, 2004].

[39] Time series of the parent products, the merged esti-
mate, and the uncertainty of the merged estimate are shown
together with data from two individual MESONET and
SCAN stations in Figure 6. The weights of the parent prod-
ucts are similar at these station points; hence, the merged
estimates fall between the three parent products without
closely following any one in particular. On average, 82%
of the time the station data (both MESONET and SCAN)
fell between the 62� lines (while we expect around 95%
of the time), indicating that the triple collocation-based
errors are slightly underestimating the uncertainty of the
products and/or the difference is due to the representative-
ness errors of the station data (Figure 6). Average station
data correlations with the parent products and the merged
estimate are summarized in Table 1; the significance of
these correlations, the correlation comparisons of parent
products, and the merged estimate are given in Table 2. On
average, parent products are better correlated with the
MESONET data than with the SCAN data (first three rows
of Table 1). The number of stations that have significant
correlations with the parent products and the merged esti-
mate are higher for the MESONET data than for the SCAN
data (first four rows of Table 2). The merged estimates are
better correlated with the station data than the individual
parent products (first four rows of Table 1), particularly
better than both ALEXI and LPRM (fifth and seventh rows
of Table 2)—implying the merged product is more accurate
than its parents products individually. Although, on aver-
age, the merged estimate has better correlation with the
MESONET (but not SCAN) than the best correlation of the
parent products, the improvement is not significant for the
majority of the stations (rows 11 and 12 of Table 2).

[40] Here the station-based vegetation-adjusted soil mois-
ture is better correlated with the surface than root-zone soil
moisture, while we expect vegetation-adjusted soil moisture
to converge to the surface soil moisture over nonvegetated

Figure 3. Cross correlations (r) between weekly ALEXI, Noah, and LPRM composites during 2002–
2010 using months April through October. Regions lacking significant correlation (at 95% confidence
level) are plotted as white and the regions where either correlated product is consistently missing are
given in dark blue.
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areas (Table 1). In general the vegetation-adjusted product
is highly related to both surface and the root-zone soil mois-
ture products, while the relative magnitude of these rela-
tions are driven by the vegetation cover fraction of the area
of interest. Given the average fraction of vegetation over
the study area is 0.37 (Figure 1), it is expected that the vege-
tation-adjusted soil moisture will on average be more
strongly associated with the surface than with the root zone
in this experiment.

[41] The above results were obtained by calculating the
anomalies using a weekly sampling window (see section 4.3).
Sampling errors in the mean and standard deviation estimates
that were used to create these anomalies could potentially de-
grade the quality of results. Therefore, we repeated this analy-
sis using a longer 5 week (versus 1 week) sampling window
centered on the week-of-interest to calculate Noah, ALEXI,
and LPRM anomalies. While a longer sampling window
decreases sampling errors in estimated anomalies, it also

obstructs the effective characterization of short-term soil
moisture anomalies and decreases the number of effective
degrees of freedom in the anomaly time series (by inducing
temporal autocorrelation). Since results from this sensitivity
analysis (not shown) suggest that the negative impacts of a
longer sampling window outweigh the positives (i.e., all cross
correlations referred in Table 2 are degraded), we kept the
standardization process as described in section 4.3.

5.3. Comparisons to Naive Merging

[42] Similar to the triple collocation-based merging
scheme, naive merging also leads to an integrated product
that was generally better than any of its three parent prod-
ucts in isolation (Table 2). However, the triple collocation-
based merged estimate did not generally lead to an inte-
grated product that was demonstrably superior to naive
merging (i.e., merging with equal weighting) (Table 2).
Here we stress that the analyses in Table 2 exclude stations

Figure 4. Weights of soil moisture estimates obtained from triple collocation. All four rows used the
same ALEXI and Noah products in the triple collocation analysis. The first row used the native LPRM
surface soil moisture product, whereas the second to fourth rows used exponentially filtered LPRM-
based root-zone soil moisture products with characteristic time lengths of 4, 7, and 14 days, respectively.
White areas correspond to equal 1/3 weighting where triple collocation results are unavailable.
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Figure 5. Example weekly composites of ALEXI, Noah, LPRM, merged soil moisture, and its uncer-
tainty estimates for the 19th week of 2007. Soil moisture estimates and the error of the merged product
are presented in terms of standard normal deviates. White areas in the error image correspond to areas
where triple collocation results are unavailable.

Figure 6. Weekly soil moisture composite time series in terms of standard normal deviates for the
Apache (MESONET) station (Figure 6, top) and the crossroads (SCAN) station (Figure 6, bottom).
ALEXI, Noah, and LPRM values are obtained from pixels that include the available station. Brown lines
indicate the 2� confidence interval of the merged product calculated using the uncertainty estimates
obtained from equation (5) or (10).
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where root-zone station-based soil moisture observations
(primary reason) and triple collocation error estimates are
not available. This indicates that the lack of difference
between the triple collocation results and naive (i.e., equal)
weighting results is due to the approximate equal weighting
by triple collocation (and not a lack of data availability).
Potential reasons for the lack of significant improvement in
our merged product versus the baseline parent and the
naively merged products include (1) station data are point
data and may have high representativeness errors [Ryu and
Famiglietti, 2005; Miralles et al., 2010; Cosh et al., 2006],
and/or (2) triple collocation-based errors may not be opti-
mal due to inadequate mutually available data (limited tem-
poral extent of parent products), and/or (3) the weights are
optimal, but the parent products may have similar skills
and therefore merging them in a naive way produces esti-
mates that are only marginally different from the optimally
merged estimates obtained via triple collocation.

[43] In particular the station observations are point data,
and thus very susceptible to representativeness errors and
the weights obtained through triple collocation are very
sensitive to the number of mutually available data. It is our
experience that the number of mutually available triplets in
this study may not be sufficient for highly accurate triple
collocation estimates on weekly or monthly time scales

[Zwieback et al., 2012]. However, as longer time series
become available through remote sensing techniques and
modeling, and as improved station data (with less represen-
tativeness errors via better selection of station and/or sensor
locations) are collected, it is expected that the merged esti-
mates will result in higher improvements over the parent
products.

[44] The difference between the optimal solution and the
naive method was also evaluated by investigating the sensi-
tivity of the optimal solution to data availability and aver-
aging. Specifically, the triple collocation-based weights and
the cross correlations for various averaging window lengths
(weekly or monthly) were calculated (Table 3) to evaluate
the sensitivity of derived optimal weights to aggregation
period and retrieval availability. To do this, the daily data
were averaged into either weekly or monthly composites
by using all the available daily data for averaging (i.e., the
‘‘all available scenario’’) or using only the days when all
three products are available (i.e., the ‘‘mutually available
scenario’’). Applying the mutually available scenario guar-
antees that equal numbers of daily products are used in
weekly or monthly composites analyzed via triple colloca-
tion. Later, the weights and the correlations were spatially
averaged into a single value, for each scenario separately,
by filtering out the areas that do not have reliable triple

Table 1. Parent Products (ALEXI, Noah, and LPRM), Merged Estimate, and Station Data (MESONET or SCAN) Cross Correlations
With the Station Dataa

MESONET SCAN

Surface Veg. Adj. Root Surface Veg. Cor. Root

ALEXI 0.46 0.48 0.38 0.36 0.38 0.34
Noah 0.54 0.54 0.33 0.41 0.42 0.33
LPRM 0.52 0.55 0.43 0.51 0.54 0.51
MERGED 0.61 0.63 0.46 0.55 0.58 0.51
NAIVE 0.61 0.64 0.46 0.55 0.57 0.50
MESONET or SCAN (Surface) 1.00 0.91 0.37 1.00 0.91 0.67
MESONET or SCAN (Veg. adj.) 0.91 1.00 0.60 0.91 1.00 0.78
MESONET or SCAN (Root) 0.37 0.60 1.00 0.67 0.78 1.00

aThree layers of station soil moisture data are considered: surface, vegetation adjusted, and root zone. NAIVE refers to the merged product obtained by
giving equal weight to each parent product.

Table 2. Results of Product Versus Ground-Data Cross-Correlation Analysis for Various Scenariosa

Scenario Product

MESONET SCAN

Total Neg Non Pos Total Neg Non Pos

Correlations significantly
different than 0

ALEXI 50 0 2 48 44 0 5 39
Noah 50 0 1 49 44 0 4 40

LPRM 50 0 1 49 44 0 7 37
MERGED 50 0 0 50 44 0 2 42

MERGED estimate correlations
better than individual prod-
ucts (no significance test)

ALEXI 50 5 – 45 44 4 – 40
Noah 50 12 – 38 44 13 – 31

LPRM 50 4 – 46 44 7 – 37
NAIVE estimate correlations

better than individual prod-
ucts (no significance test)

ALEXI 50 3 – 47 44 3 – 41
Noah 50 10 – 40 44 17 – 27

LPRM 50 7 – 43 44 10 – 34
MERGED best significantly ALL 50 0 49 1 44 0 44 0
MERGED best ALL 50 0 19 31 44 0 23 21
NAIVE best significantly ALL 50 0 47 3 44 0 43 1
NAIVE best ALL 50 0 18 32 44 0 27 17

a‘‘Total’’ refers to the number of ground stations considered. ‘‘Neg’’ and ‘‘Pos’’ refer to statistically significant negative and positive results, respec-
tively, for the scenarios given in the left column, and ‘‘Non’’ refers to neither a positive result nor a negative result. For the significance tests, a 95% confi-
dence level is used.
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collocation estimates (for weight averages) or have insig-
nificant correlations (for correlation averages). In general,
the differences in product weights were higher than the dif-
ferences between product cross correlations for weekly all
available scenario, while the weight differences were much
less for the weekly mutual scenario and both monthly sce-
narios (Table 3). This implies that the weighting favors
products with higher temporal availability (¼model) for
weekly scenarios, but the effect of this retrieval frequency
is reduced when data sets are averaged for longer time peri-
ods. This reduced difference in weights and correlations
can also explain the similarity between the performance of
merged products based on triple collocation and naive
weighting (i.e., naive merging is equal to having 0.33
weights, hence the smaller the difference between weights
of the products, the more it is similar to naive merging).
Since the skills of the parent products are very similar, the
naive averaging approach simply follows the optimal solu-
tion obtained via triple collocation.

5.4. Vertical Support

[45] As discussed above, the final merged soil moisture
estimate is a mixed product that reflects the soil moisture

layer that is actively interacting with the atmosphere via
evapotranspiration. Hence, using the surface-only micro-
wave remote sensing product over sparsely vegetated areas
is consistent with the properties of the mixed product.
However, over vegetated areas this mixed vertical support
is inconsistent with microwave-based soil moisture retriev-
als, which are strictly limited to the near-surface layer (sur-
face to 3 cm). Consequently, over densely vegetated areas
there is a potential inconsistency in the vertical support of
LPRM soil moisture retrievals relative to ALEXI and Noah
products (see above). A series of analyses has been per-
formed to test the effect of using the surface-only micro-
wave remote sensing product on triple collocation results
over vegetated areas.

[46] Since the parameter of interest is the vegetation-
adjusted soil moisture value (rather than root-zone soil
moisture), we have narrowed our focus to this parameter.
High correlations between surface and vegetation-adjusted
soil moisture values at weekly time scales over densely
vegetated areas imply a strong linear relation between the
surface and the vegetation-adjusted soil moisture simula-
tions, similar to the triple collocation equations (equations
(16)–(18)) where we assume a linear relation between each
data set and the truth. Therefore the applicability of these
equations to soil moisture products obtained at different
vertical depths is determined by the linearity of the rela-
tionship between surface and vegetation-adjusted soil mois-
ture. The depth variations pose a problem to this application
only if they manifest themselves in a nonlinear or a hysteric
relationship between products. Conversely, if the relation-
ship is linear, it simply folds into the linear rescaling step
which underlies the application of triple collocation. There-
fore the impact of vertical consistency (between LPRM and
Noah/ALEXI-based soil moisture products) will hinge on
the degree to which soil moisture estimates at various
depths can be linearly related.

[47] Correlations were computed between the surface
and vegetation-adjusted soil moisture values from both
Noah and CLM (Figure 7) and both MESONET and SCAN
station data (Table 4). Very high correlations (i.e., linear
relationships) were found between the surface and the veg-
etation-adjusted station-based soil moisture data from sta-
tion-based analysis (in Table 4, 0.91 for both MESONET

Table 3. Mean Weights and Cross Correlations Over CONUS for
Different Data Compositing Strategiesa

Weights

ALEXI Noah LPRM

Mutually available weekly 0.27 0.33 0.41
Mutually available monthly 0.33 0.29 0.37
All available weekly 0.24 0.38 0.37
All available monthly 0.31 0.34 0.35

Correlations

ALEXI-Noah ALEXI-LPRM Noah-LPRM

Mutually available weekly 0.38 0.40 0.43
Mutually available monthly 0.44 0.45 0.45
All Available weekly 0.40 0.38 0.44
All Available monthly 0.46 0.44 0.46

aMutually and all available scenarios refer to the parent products that
are used in data standardization (section 4.3).

Figure 7. Weekly composite correlations between surface and vegetation-adjusted Noah and CLM soil
moisture estimates.
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and SCAN data) and from model simulations (in Table 4,
0.96 correlations over CONUS for Noah and CLM, respec-
tively). This suggests that at weekly time scales vertical
inconsistencies in support can be effectively resolved via
linear rescaling.

[48] Another way to test the potential impact of the sur-
face-only LPRM data products is to transform it into an
approximated root-zone product using a low-pass filter. In
general, the differences between triple collocation analyses
that use different LPRM products (corresponding to various
amounts of temporal smoothing via equation (29)) are min-
imal (Figure 4), suggesting the nonlinearities due to vertical
support differences do not have a major impact on esti-
mated weights (supporting the correlation results given
above).

6. Discussion and Conclusions
[49] Model error covariance estimates in many hydrolog-

ical data assimilation applications are obtained through ran-
dom perturbation of forcings and states without any
rigorous justification for the magnitude of these perturba-
tions [Reichle et al., 2008; Crow and van den Berg, 2010].
Since ensemble spread tends to be a stronger function of
forcing spread than initial condition spread [Yilmaz et al.,
2012], this results in a merging scheme that is dependent
on the user to accurately characterize modeling errors
which, in turn, determine the relative weight applied to
model background and observations at update times.

[50] Here we introduce a methodology that is completely
objective and does not assume any arbitrary assumptions
concerning the error characteristics of its input data sets. Spe-
cifically, error variances of three independently estimated
soil moisture data sets are obtained using a triple collocation
method and different soil moisture products are merged in an
ordinary least squares framework. With the objective analy-
sis introduced here, we are also able to estimate the uncer-
tainty of the merged soil moisture as a separate product,
which could be particularly useful for applications which
require information concerning the product reliability.

[51] Disadvantages of this framework when compared to
traditional data assimilation techniques include the limita-
tion that estimated model errors are assumed to be constant
in time and corrective information obtained via the merger
is not temporally propagated forward in time (as in sequen-
tial filtering). On the other hand, the triple collocation/least
squares approach is simple, highly transparent, and based
on an objective calculation of relative errors in various soil
moisture estimates. As discussed above, it is likely possible
(although not trivial) for triple collocation-based estimates
of modeling error to be incorporated into a full data assimi-
lation system. This analysis can be viewed as a preliminary
step in that direction.

[52] In addition, there are three necessary requirements
for the triple collocation analysis at the center of our
approach: the independence of errors, the availability of
long-enough time series, and the mutual linearity of prod-
ucts. The first assumption can be justified for many geo-
physical variables (i.e., soil moisture, soil temperature,
potential evaporation, etc.) as there are numerous independ-
ent satellite- and model-based estimates of each. The second
assumption (adequate data-series length) is required to min-
imize sampling errors in triple collocation estimates. While
the 9 year data sets used here are adequate for this prelimi-
nary analysis, it should be noted that better triple collocation
results may be obtained if longer data sets are results. Addi-
tionally the availability of longer time series will also ena-
ble estimation of separate sets of weights for seasonal or
subseasonal time scales to partly address the issue of non-
stationary weighting of products. The third assumption can
be easily checked and the linearity can be justified via sim-
ple correlation calculations, as was done in this study.
Nevertheless, the methodology is very flexible and can be
applied in many hydrological applications given the avail-
ability of appropriate input data sets.

[53] In this study we have applied a triple collocation-
based merging strategy to integrate soil moisture anomaly
information acquired from microwave remote sensing,
thermal remote sensing, and land surface modeling. The
final merged product can be used as a standalone product
particularly for agricultural drought monitoring applica-
tions. The approach also provides the ability to estimate
uncertainties associated with the merger estimate. When
compared to ground-based soil moisture observations, the
merged product improves upon the accuracy of its three
parent products but is not superior to merged products
obtained using naive equal weighting. Given the small dif-
ferences found between cross correlations of products and
between weights of products, the lack of difference
between our results and naive weighting appears attribut-
able to the marginal skill differences that exist between
ALEXI-, Noah-, and LPRM-based soil moisture estimates
over the CONUS. We expect the differences between the
skills of triple collocation- and naive method-based
merged products would be higher over study areas where
the differences between the skills of the parent products
are higher.

[54] Acknowledgments. We thank Jeffrey Basara of University of
OK and Micheal Cosh of U.S. Department of Agriculture for the MESO-
NET and SCAN soil moisture data sets. We also thank the anonymous
reviewers for their constructive comments, which led numerous clarifica-
tions in the final version of the manuscript. Research was partially sup-
ported by NASA Terrestrial Hydrology Program grant NNX06AG07G
entitled ‘‘Monitoring of Root-Zone Soil Moisture Using Multi-Frequency
Observations of Surface Soil Moisture and Evapotranspiration.’’ U.S.
Department of Agriculture is an equal opportunity provider and employer.

Table 4. Noah, CLM, and Station Cross Correlations Between Surface and Vegetation-Adjusted Weekly Soil Moisture Composite
Values at Multiple Locationsa

Surface–Veg. Adj. MESONET Stations SCAN Stations CONUS CONUS-East CONUS-West

Noah 0.95 0.96 0.96 0.96 0.99
CLM 0.96 0.96 0.96 0.92 0.99

MESONET 0.91 – – – –
SCAN – 0.91 – – –

aCONUS-East lays between 88� and 75� W, and 32� and 41� N and CONUS-West between 116� and 103� W and 29� and 36� N.
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